R.V. R. & J.C. COLLEGE OF ENGINEERING (Autonomous),

Chowdavaram, Guntur-19

Department of Computer Science and Business System

Minor Degree (Cloud Computing)

Subject Code	Subject Name	No.of Hours		
		Lecture	Tutorial	Practical
CCMR1	Principles of Cloud Computing	3	1	-
CCMR2	Cloud Networking	2	-	2
CCMR3	Cloud Programming	2	-	2
CCMR4	Grid and Cluster Computing	3	1	-
CCMR5	Enterprise Storage System	2	-	2
CCMR6	Cloud Security	3	1	-
CCMR7	High Performance Computing	3	1	-
CCMR8	Cloud Computing and Distribution Systems	-	-	-
	(MOOCs)			
CCMR9	Block chain and its Applications (MOOCs)	-	-	-

Note: Students who completes C, Python are eligible.

CCMR1- PRINCIPLES OF CLOUD COMPUTING

Minor Degree

Course outcomes:

CO-1: Differentiate the parallel and distributed computing

CO-2: Demonstrate the virtualization

CO-3: select the type of cloud for different requirements of an organization.

CO-4: apply the cloud services to different applications

UNIT-I CO1 [15 periods]

Basics: The vision of cloud computing, the cloud computing reference model, Characteristics and benefits and challenges

Historical developments: Distributed systems, Virtualization, web 2.0, Service-oriented computing, utility oriented computing

Building cloud computing environments: Application development, Infrastructure and system development, Computing platforms and technologies

Principles of Parallel and Distributed Computing: Eras of computing, Parallel vs. distributed computing, Elements of parallel computing, Elements of distributed computing, Technologies for distributed computing

UNIT-II CO2 [12 periods]

Virtualization: Introduction, Characteristics of virtualized environments, Taxonomy of virtualization techniques, Virtualization and cloud computing, Pros and cons of virtualization, Technology examples.

UNIT-III CO3 [12 periods]

Cloud Computing Architecture: Introduction, The cloud reference model, Types of clouds, Economics of the cloud, Open challenges

UNIT-IV CO4 [12 periods]

Cloud Platforms in Industry: Amazon web services, Google AppEngine, Microsoft Azure **Cloud Applications:** Scientific applications, Business and consumer applications.

Text Books:

- **1.** Mastering Cloud Computing Foundations and Applications Programming by RajkumarBuyya, Christian Vecchiola, S. ThamaraiSelvi, Morgan Kaufmann, 2013
- 2. Cloud Computing Principles and Paradigm by RajKumarBuyya, James Broberg and AndrzejGoscinski, John Wiley & Sons, 2011.

Reference Books:

- 1. https://cloud.google.com/ (Links to an external site.)
- https://aws.amazon.com/training/awsacademy/

CCMR2(R20)

CLOUD NETWORKING

(Minor Degree)

L P C 2 0 3

Course Objectives:

At the end of the course, the student will

- 1. Understand the basic concepts of Networking.
- 2. Understand the basic concepts of Inter cloud Resource Management
- 3. Understand the concepts of VPN Architecture and Tunneling.
- 4. Understand the concepts of P2P Networks, Social Networks

Course Outcomes:

CO1-Expalin the basics of Networks, Virtualization Structures/Tools

CO2-Explain the concepts of Data Center networks and virtual machines

CO3-Demonstrate the creation of Virtual private networks

CO4-Understand the basic concepts of P2P Overlay Networks and Social Networks

Unit-I CO1,12 Periods

Introduction to Cloud Networking: Introduction, Networking Basics, Networks, Network Operating Systems, Network Architecture

Virtualization Structures/Tools and Mechanisms: Hypervisor and Xen Architecture, Binary Translation with Full Virtualization, Para Virtualization with compiler support

Unit-II CO2,13 Periods

Data Center Design and Interconnection Networks: Data Center Interconnection Networks, Modular Data Center in shipping Containers, Inter connection of Modular Data Centers, Data-Center Management Issues.

Inter-cloud Resource Management: Extended Cloud Computing Services, Resource provisioning and platform Deployment, Virtual Machine Creation and Management, Global Exchange of Cloud Resources

Unit-III CO3,13 Periods

Architectural Design of Compute and Storage clouds: Cloud Architecture Design, Layered Cloud Architectural Development, Virtualization support, Disaster Recovery, Architectural Design Challenges.

Virtual Private Network: Introduction, VPN Architecture, VPN Tunnelling, VPN Security, Remote Accessing on Cloud, Case Studies

Peer-to-peer computing systems: Basic concepts of P2P computing systems, challenges in P2P computing systems, Taxonomy of p2p Network Systems

Unit-IV CO4,12 Periods

P2P overlay networks and properties: Unstructured, Structured P2P Overlay Networks, Distributed Hash Tables, Hierarchically Structured Overlay Networks.

Routing, proximity, and fault tolerance: Routing in P2P Overlay Networks, Network Proximity in P2P Overlays, Fault Tolerance and Failure Recovery, Churn Resilience against Failures.

Online social and professional networking: Online Social Networking Characteristics, Graph Theoretic Analysis of Social Networks, Communities and Applications of Social Networks, Facebook, Twitter for Microblogging, News and Alert Services

Text Book(s):

- Lee Chao "Cloud Computing Networking: Theory, Practice and Development"
- 2. Kai Hwang Geoffrey C. Fox Jack J. Dongarra "Distributed and Cloud Computing: From Parallel Processing to the Internet of Things".

CCMR3: Cloud Programming C CCMR3(R20) 3 Minor Degree

Course Objectives:

At the end of the course, the student will

- 1. Understand the basic concepts of cloud architecture
- 2. Understand the basic concepts of SOA, Open Source Tools
- 3. Understand the concepts of Cloud Service Providers.
- 4. Understand the concepts of Programming support for AWS, Google Cloud and MS Azure

Course Outcomes:

- CO1-Expalin the basics of Cloud architecture
- CO2-Explain the concepts of SOA, Cloud computing Tools and Applications
- CO3-Explain the concepts of Cloud Service Providers
- CO4-Explain the concepts of programming environments for AWS, Google Cloud, Microsoft Azure

UNIT-I	[CO1]12 periods				
Introduction to Cloud Computing:					

Introduction to Cloud Computing, 5-4-3 principles, Cloud Eco System, features of Cloud service.

Model for federal Cloud Computing, Cloud Federation, Two-layer Connectivity for Cloud Federation.

Cloud architecture, Anatomy of Cloud, Managing the Cloud, Cloud Migration. Cloud Deployment and Service Models.

UNIT-II [CO2]12 Periods

SOA and Cloud Computing Tools and Applications:

Introduction, SOA and SOC, Benefits of SOA, Technologies used by SOA, Similarities and Differences between SOA and cloud computing.

Cloud computing Tools, Cloud Applications, Open-Source Support for Cloud: Introduction,

Open-Source Tools for laas, Paas, SaaS.

UNIT-III	[CO3]14 Periods

Cloud Service Providers:

Amazon web services - Compute services, Storage services, Communication Services and Additional Services.

Google App Engine - Architecture and core concepts, Application life cycle, Cost model, Observations.

Microsoft Azure –Azure Core Concepts, SQL Azure, Windows Azure Platform Appliance

UNIT-IV	[CO4]14 Periods			
Cloud Programming and Software Environments:				
Features of Cloud and Grid Platforms - Cloud Capabilities and Platform Features, Traditional Features Common to Grids and Clouds, Data Features and Databases, Programming and Runtime Support Programming Support of Google App Engine - Programming the Google App Engine, Google File System (GFS), Big Table, Google's NOSQL System, Chubby, Google's Distributed Lock Service. Programming on Amazon AWS and Microsoft Azure - Programming on Amazon EC2, Amazon Simple Storage Service (S3), Amazon Elastic Block Store (EBS) and SimpleDB, Microsoft AzureProgramming Support.				

TextBook(s): 1. K. Chandra Sekaran – Essentials of CLOUD COMPUTING. 2. Kai Hwang, Geoffrey C Fox, Jack J Dongarra, "Distributed and Cloud Computing - From Parallel Processing to the Internet of Things", MorganKaufman Publishing, 2012